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Abstract

Structural and elastic properties of non-charged polymers of stiffness ranging from flexible to rigid chains are computed by Monte Carlo
simulations. A discrete wormlike chain (WLC) model with self-interacting units is applied to chains of intermediate lengths of interest in
the AFM measurements. Variations of the persistence length and mean chain dimensions with bending stiffness are presented. The chain-end
distribution functions, the Helmholtz elastic energy and the force—extension profiles of chains of variable stiffness are computed in an isometric
ensemble. Occurrence of a plateau on the force—extension curves at intermediate chain stiffness is noted. Qualitative differences are found be-
tween force profiles from simulations and from the standard (ideal) WLC model. The differences can be ascribed to an inherent dissimilarity
between isometric and isotensional ensembles used and, at small extensions, to the excluded-volume effects. The single-chain functions from
simulations were employed to investigate the influence of bending stiffness on elasticity of networks of semiflexible chains by the three-chain
model. A stark reduction of degree of elongation of a network with rising stiffness is found. Stress—strain relations show a highly non-linear

behavior with the marked strain-stiffening effect.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Recent experimental investigations of the elastic properties
of single biological molecules led to renewal of interest in ac-
curate models of semiflexible macromolecules. A semiflexible
chain, which has a conformation intermediate between a ran-
dom coil and a straight rod may be visualized as a bending
wire. A good theoretical understanding of semiflexible poly-
mers is essential in order to correctly interpret the single-mol-
ecule experiments studied by the AFM and related techniques
[1,2]. These methods offer powerful and versatile tools to
measure the force—extension curves in single macromolecules
in various situations. Most of such works to date have been
conducted on complex biological polymers, such as DNA, pro-
teins, titin and actin, where the data on the response of mole-
cules to external force give new insights into basic biological
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processes. Single-chain stretching data on synthetic polymers
are of profound importance in answering open problems in
polymer material science.

Currently the AFM force—length profiles are almost exclu-
sively interpreted by using the two statistical mechanics
models of ideal chains, the freely jointed chain (FJC) and
the wormlike chain (WLC) models [3—6]. In the FJC model
a polymer is described as a chain of randomly jointed N seg-
ments of equal (Kuhn) length /x with no interaction between
the segments. Stretching is accompanied solely by the reduc-
tion of the conformational entropy of the chain. The WLC
model, appropriate for ideal stiff polymers, avoids the seg-
mental approach and a chain describes as a string of constant
bending elasticity. The WLC model ignores self-avoidance
and its energy is given just by the energy due to curvature.
A quantitative measure of the chain stiffness in WLC model
is the persistence length [, the characteristic length of
tangent—tangent orientation correlations of bonds along the
chain. Both models neglect the subtle features of chain elastic-
ity ensuing from the specific atomic structure of a molecule. In
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fitting the AFM force—length profiles the parameters of the
models are treated as the freely adjustable quantities. Thus
the WLC fitting constants may considerably differ from the
real values of parameters obtained by the polymer solution
methods.

In thermodynamic analysis of stretching experiments and
calculations two distinct situations have to be considered
[3,7—11]: one considers a polymer whose ends are kept at
fixed end-to-end distance and measures (by a sensor) the fluc-
tuating force. The result is a plot of mean force as a function
of an independent variable, (f) vs R. In statistical mechanics
this condition corresponds to the isometric ensemble (R-
ensemble). Alternatively, one can apply a fixed force f and
measure the fluctuating end-to-end distance; the result is
a plot of (R) vs f, i.e. of the mean length as a function of an
independent variable f. Such a set-up corresponds to the iso-
tensional ensemble (f-ensemble). These conjugated single-
chain ensembles can be seen as polymer counterparts of
isochoric and isobaric systems, characterized by the Helmholtz
and Gibbs energies A and G, respectively. For macroscopic sys-
tems two ensembles are related by the usual Legendre trans-
form G = A — fR. However, on the single-molecule level, due
to large fluctuations in the measured lengths or forces, a choice
of statistical ensemble has a profound influence on measured or
computed elastic response [3,7—11].

Isotensional conditions were considered in derivations of
the force—extension relations for ideal chains. The depen-
dence of the mean chain length (R) on the applied force f in
the FJC model is expressed by the Langevin function [4] ac-
counting for the limited extensibility of a chain up to a maxi-
mum at the contour length L. Similarly in the WLC model the
force—extension relation was originally deduced for isoten-
sional conditions [5,6]. The resulting approximate interpola-
tion formula [6] became popular in fitting the AFM results
of stiff chains such as double-stranded DNA.

A central quantity characterizing elasticity of single macro-
molecules at isometric conditions is the distribution function
of the end-to-end distance W(R). Such distribution functions,
the related thermodynamic functions and force — extension
curves are available from analytical calculations and computer
simulations for a variety of chain models. The FIC model at
low extensions reduces to the classical Gaussian model of ran-
dom-coil elasticity, where the end-to-end distribution function
W(R) is given by the Gaussian function [3,4]. In the WLC
model a formula for W(R) was deduced initially for rather
rigid polymers where the ratio L/, is of order of one [12].
A general solution of the function W(R) in the WLC model
became available only recently from an analytical theory
[13] and computer simulations [14]. Lately, the distribution
functions and the isometric and isotensional force—extension
relations were calculated [15] for a special analytical model
of an ideal semiflexible chain. This model assumes a molecule
with the Gaussian distribution of distances between successive
points along the chain, that is, with the fluctuating value of the
contour length L.

Elastic properties of non-ideal (self-interacting) chains
have been investigated mainly in flexible macromolecules

under isometric conditions. Computer modeling by the RIS
model or Monte Carlo (MC) and molecular dynamics simula-
tions using a variety of models from coarse-grained to atomis-
tic ones invariably predicts the non-linear force—extension
curves [16—23]. The non-Gaussian effects found in the distri-
bution function W(R) and force—extension relations are mark-
edly influenced by the solvent quality [16,17]. Both energy
and entropy factors contribute to the force and their proportion
can be deduced from the thermoelastic properties of single
chains [19—22]. From the single-chain elastic functions
stress—strain isotherms were computed for a large variety of
elastomeric networks by using the three-chain model of rub-
ber-like elasticity [4,23,24].

In simulations of elastic properties of semiflexible macro-
molecules a discrete version of the continuous WLC model
is usually employed. An inclusion of monomer—monomer
self-interaction [25,26] into such a bead-spring chain model
mimics the excluded-volume (EV) effect and variable solvent
conditions. It was argued [6] that the self-avoidance effects are
unimportant for charged macromolecules such as DNA at
intermediate and high extension. However, a range of non-
charged polymers, including aromatic amides and similar
heat-resistant and high modulus polymers, various thermo-
tropic liquid crystalline polymers and numerous polysaccha-
rides, belong to semiflexible polymers. Since good solvents
are mostly used in experiments with these polymers, stiff
chains may exhibit deviations from ideal chain behavior due
to EV interactions, particularly in the limit of very long chains
[27]. On the other hand, polymers of intermediate length are of
primary experimental interest in the AFM method. Here as
well an impact of the EV effect on the force—extension pro-
files calls for closer examination.

In the present paper we have simulated the behavior of non-
charged polymers of stiffness ranging from flexible to almost
rigid chains by means of the discrete WLC-like model involv-
ing self-interacting segments. At first, variation of the persis-
tence length with bending stiffness was calculated and the
role of EV was elucidated. Then, the chain-end distribution
functions, the Helmholtz elastic energy and force—extension
curves were computed under isometric boundary conditions.
Finally, influence of bending stiffness on elasticity of networks
of semiflexible chains was investigated by the three-chain
model of rubber-like elasticity.

2. Simulation model

We have used a hybrid coarse-grained model of semiflexi-
ble chains in which the FJC-like segmental approach is com-
bined with the WLC-like bending energy. A chain in the
model consists of bead units connected by effective bonds
characterized by stiff springs. Each effective bond represents
several chemical bonds along the chain backbone. Addition-
ally, a potential for self-interaction of effective units is
included in this discretized analogy of the WLC model. An
effective bond is described by finitely extensible non-linear
elastic potential (FENE) [28]
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The bond length in the potential varies between
Lnin = 21y — lnax and l.x, Where [, is a preferred distance,
r=lInax — lo, the bond stretching constant k =20e and ¢ is
the strength of pair-contact interaction. Typical distances are
Imin=0.4, [,=0.7 and /,,x = 1. The FENE potential intro-
duces the fluctuating contour length into the model, in analogy
with an approach [15] modeling the WLC polymer with
a Gaussian distribution of distances between successive points
along the chain. Yet, the minimum changes of L. were found
in simulations.

Variation in chain stiffness is expressed by the bending
potential [29,30] between two consecutive bonds,

U, =b(1 —cos f) (2)

where 0 is a supplementary angle to a valence angle and the
stiffness parameter (the bending force constant) b =Ae is
proportional to the pair-contact interaction energy.

A Morse-type potential [28] is used for the non-bonded
interactions between effective monomeric units (beads) sepa-
rated by distance r. Incorporation of non-bonded interaction
of monomers introduces the EV effect into the model. The
potential includes a quasi-hard core self-avoidance and an
attraction part

Un(r)/e =exp[ — 2a(r — rmn)] — 2exp| — a(rr — rmin)] (3)

where o =24 and the minimum of the potential r,;, = 0.8 was
selected [28]. This short-range potential predicts negligible
interaction at r > 1 and the closest distance of monomer units
at =0.76. Thus, the core radius of a bead is ¢ = 0.38. All
distances in the above potentials are expressed in arbitrary
length units.

A similar model was recently used to examine the behavior
of grafted WLC polymers under mechanical stress [26]. The
principle parameters of the model are the chain stiffness b (re-
lated to the persistence length /;) and the pair interaction
energy ¢. The parameters representing the good solvent condi-
tion were selected in the potentials, Egs. (1)—(3). By turning
interaction potential Uy (7) on and off it is possible to assess
the contribution of EV interactions to computed properties
of chains. When the temperature is expressed in units of the
Boltzmann constant and the unit strength of the attractive
potential, e/k =1, is chosen, simulations correspond to the
temperature 7 = 1, well above the theta state located at tem-
perature about ® = 0.62 [28].

Metropolis MC method with reptation updates of chains
was used to obtain the ensemble averages. No biasing tech-
nique for sampling semiflexible chains was used. The trial
moves were created completely randomly and accepted with
classical Metropolis criterion. Thus acceptance of very stiff
chains was relatively low (only few percent for highest stiff-
ness). Number of trial moves used in chain generation was
up to 3 x 107 MC cycles. The validity of algorithm was
checked by reproducing some of the universal coil properties.

For flexible chains we found the size ratio (R*)/(Rz) = 6.34
close to theoretical value 6.303 and for semiflexible chains
we observed locally (in high g-limit) the coil form factor
S(q) ~ ¢~ characteristic for rigid rod. Error estimates of
ensemble averages are for most depicted results within the
size of markers except for end-to-end distance distributions
in region of R — 0 where slightly larger fluctuations can be
explained by poorer sampling of quasi-cyclic conformations.
Single chains of lengths N from 20 to 400 units were gener-
ated. Mostly the results for the chain length of 100 and
200 beads are given, representing the polymers of intermediate
lengths typical in AFM measurements. The stiffness parameter
b was varied in the interval 0—75. The radial distribution
function of end-to-end distances P(R) was evaluated by group-
ing the chain vector lengths from the simulations into a histo-
gram of a bin width of 0.7. Furthermore, the mean-square
end-to-end distance (R°), the radius of gyration (Rz)"* and
two WLC parameters, the contour length, L.= (N — 1){I)
and the persistence length /, were computed from simulations.
The persistence length [, was calculated by two methods
[3,31]: (a) by the rigorous definition, from the average sum
of projections of all bonds on the first bond of a chain in the
limit N — o«

- < TZ?> / (0 @)

and (b) by the approximate procedure from the average cosine
of the supplementary angle in the chain backbone

ly=(1)/(1 = {cos 0)) (5)

The latter equation applies for a wormlike chain and is
deduced as a continuous limit of a freely rotating chain by
letting N — o, ® — 0 and / — 0 [27].

3. Results and discussion
3.1. Chain structure parameters

At first, the dependence of the persistence length /, defined
by Eq. (4) on the chain length N was computed for self-
interacting chains (Fig. 1). All values of /, and of other length
quantities presented in figures henceforth are normalized by
the unit bond length /,=0.7. In the range of chain stiffness
considered the chain length N =400 is apparently sufficient
to reach the limiting value (/) at N — . The set of extrap-
olated values of (/) for self-interacting chains, denoted
henceforth as the rigorous persistence lengths, is plotted in
Fig. 2 as a function of the stiffness parameter b. The persis-
tence length (/). increases linearly with the parameter
b and the resulting straight line in Fig. 2 gives the slope
very close to unity. The plot in Fig. 2 upholds a direct propor-
tionality between the bending force constant b and persistence
length (/) for a continuous chain [29]

b=kT (L), /1
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Fig. 1. Variation of the persistence length [, based on Eq. (4) with the chain
length N for the stiffness parameter b given in the legend.
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Fig. 2. Variation of the persistence length with the stiffness parameter » com-
puted for self-interacting (EV) chains by Eq. (4) from the extrapolated values
(lp)  (solid circles) and from the values of /, for N =200 (empty circles); by
Eq. (5) (squares) and by the reverse manner from WLC mean dimensions
given by Eq. (6) (triangles). Inset: persistence length from Eq. (4) for non-
interacting chains (EV = 0) computed by setting Uy =0 (dotted line).

calculated analytically from the description of chain stiffness
in terms of elasticity theory and taking into account that
reduced units kT =1 are implied in simulations.

Exploitation of values of the persistence length based on
Eq. (4) without extrapolation to N — o is as a rule inappro-
priate. The use of unextrapolated values, such as (/)00 corre-
sponding to N =200, leads to a deviation from linearity in
Fig. 2 at higher chain stiffness. Furthermore, the persistence
length computed from the average cosine by Eq. (5) is plotted
in Fig. 2. As seen, in the range of chain stiffness considered
this approximate procedure gives about the same values of /,
for a given b as the rigorous procedure.

The dependences of [, on b for pseudo-ideal chains, mod-
eled by neglecting non-bonded interaction and denoted
EV =0, are almost identical to those for self-interacting

chains; some minute difference can only be seen in the low
stiffness region (inset of Fig. 2). Hence, the volume effects
influence persistence length only in fairly flexible chains; for
b higher than about 5 the persistence length is essentially
identical to the “‘unperturbed” value (/,)e pertaining to the
theta state.

Variation of the mean-square end-to-end distance (R*) with
the stiffness parameter b is shown in Fig. 3. Mean dimensions
increase monotonously with chain stiffness. At small b a ran-
dom-coil regime is present, as documented by the ratio (R*)/
(R3) = 6.34 for b =0 and N = 200, typical for flexible chains
in good solvents. Mean chain dimensions gradually increase as
the chains become stiffer, but even at b =75 the ratio (R*)/
(R2) =9.10 for N =200 is still off the rigid-rod limit of 12.
The EV effect on dimensions (R?) is hardly noticeable in
Fig. 3 and, again, is limited only to flexible chains.

Predictions of the chain size by the standard (ideal) WLC
model are also plotted in Fig. 3. The mean-square end-to-end
distance of WLC is given as [3,27]

(R*) o= 2pLe —2L(1 —exp(— Le/1y)) (6)

The function <R2>WLC was computed by using the contour
length L. = 199(l) and extrapolated values of (/). for self-
interacting chains. As seen in Fig. 3 chain dimensions from
the standard WLC model are in harmony with the simulation
results.

A variety of experimental methods are used to determine /,
in dilute solutions or in bulk, including viscosity, sedimenta-
tion, flow birefringence, light scattering and SANS [27]. The
experimental data (obtained mostly in good solvents) are fitted
with the standard (ideal) WLC model and the potential EV
effect on the persistence length is neglected. In other words,
Eq. (6) (or its pendant for the radius of gyration [27]) is
used in reverse to determine the persistence length from the
measured chain dimensions. In order to illustrate this proce-
dure, the simulation data of (R?) were substituted into

| —m—wmc_Ev
20000 4 - MC_EV=0 .07
| --0-- WLC,eq6 -
15000 -
~N
=Q
NI\
& 10000 -
\";
5000
0 -
T T T T T T T T
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b

Fig. 3. Variation of the chain dimensions (R?) with chain stiffness b for
N =200 determined by MC simulations with EV interactions included or
neglected (squares and stars, respectively) and computed from the WLC rela-
tion, Eq. (6), by using extrapolated values of (/). for self-interacting chains
(dashed line).
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Eq. (6) and the values of [, extracted. The persistence length
computed in such a reverse manner from WLC mean dimen-
sions (Fig. 2) fully concurs with the corresponding values
based on Egs. (4) and (5). It was noted earlier [31] that various
definitional expressions for computing the persistence length
in semiflexible chains may result in disparate values of persis-
tence length for very rigid chains if persistence length is not
extrapolated to N — oo.

Instead of the model-based stiffness parameter b, the ratio
of the contour and persistence lengths L/l, can be employed
as an alternate indicator of the chain stiffness. This ratio of
two experimentally accessible quantities is in a reciprocal
relation to the parameter b. The function L./, vs b calculated
by using the rigorous persistence lengths is illustrated in Fig. 4
for four chain lengths. Conventionally, a chain is considered
flexible when L. >> [, and rigid when L. = [, holds. The
respective limits L./[, — o and L./l — 0 represent a Gauss-
ian random coil and a rigid rod. The semiflexible chains cover
a wide range of parameters L./, or b between the above limits.

3.2. Chain-end distributions and the Helmholtz energy

When the chain length R is taken as independent variable
the elastic response of a single macromolecule is derived
from the co-ordinate probability distribution function W(R)
of a macromolecule having one end fixed at the origin and
the other end fixed in space at co-ordinates x,y,z. The distribu-
tion function W(R) of a chain of contour length L. is related
[3,4] to the Helmholtz elastic energy A = c(T') — kT In W(R).
Since the mean configurational Helmholtz energy of an uncon-
strained chain ¢(T') is a function only of T it will be henceforth
incorporated into A. The probability distribution functions
W(R) is linked to the radial function of a chain with a free
end point by W(R) :P(R)/4TCR2.

The change of the radial distribution functions P(R) on
going from flexible to almost rigid chains is shown in
Fig. 5a. Error bars in simulation data are approximately of
the size of symbols. On increasing chain stiffness the peak

120
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Fig. 4. The dependence of ratio of the contour and persistence lengths L./l on
the stiffness parameter b for chain lengths N given in the legend.
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Fig. 5. (a) Radial distribution functions of chains of N =100 and stiffness
b given in the legend and (b) the corresponding functions for »=0, 5 and
10 (from left to right) computed by simulations with (full lines) and without
(dashed lines) non-bonded interactions.

maximum shifts to the larger chain-end distances R. In flexible
chains the P(R) distribution is controlled primarily by the con-
formational entropy whereas the bending potential that tries to
extend the chain prevails in semiflexible chains. These com-
peting trends affect also the changes of the distribution func-
tion W(R) with the chain stiffness b (not shown): while the
flexible chains can roughly be described by the Gaussian func-
tion, the distribution function W(R) takes a completely non-
Gaussian shape in the region of semiflexible chains. On the
distribution P(R) it is seen once more that EV interactions
play a role only in flexible chains of b <5 (Fig. 5b).

The Helmbholtz elastic energy A(R) of chains of variable
stiffness expressed by the parameter b is presented in
Fig. 6a. The trends in distribution functions and Helmholtz
energy observed for self-interacting chain model are qualita-
tively similar to the findings reported for the standard [12—
14] and Winkler [15] WLC models. A roughly Gaussian
quadratic dependence of A on R is seen in Fig. 6a in flexible
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Fig. 6. (a) Helmholtz elastic energy and (b) probability distribution function
W(R) in the crossover region for chains of N = 100 and the bending parameter
b given in the legend.

chains, except at R — 0 where, in contrast to ideal chains,
a ring closure probability is zero due to the EV effect. The
minima on the Helmholtz energy curves move towards full
chain stretching with increasing chain stiffness and a positive
inclination of A(R) curves in the central region changes to
a negative one.

The behavior in a crossover region between flexible and
rigid chains is particularly intriguing as illustrated by the
shape of the function W(R) shown in Fig. 6b. A long, roughly
flat section of the function W(R) is observed at intermediate
stiffness around b =25 (L./l[,=4.06 for N=100). A non-
monotonic behavior of W(R) and A(R) functions with double
minimum hump was discovered in the standard WLC model
[13,14] for a range of persistence lengths near to L./, = 3.85.
Such a behavior invokes the first-order transition where a chain
could co-exist in a “short” (flexible) and a “long™ (rigid rod)
state and leads to curious force—length relation. Bimodality of
this type was not found by Winkler in his WLC model [15]
and is not seen in Fig. 6b for our discrete WLC-like model
at intermediate chain lengths. The contour length fluctuations
assumed in our and Winkler models may be responsible for

this notable dissimilarity in behavior relative to the standard
WLC model.

3.3. Force—extension functions

The mean force as a function of an independent variable R
is determined by the differentiation (f) =dA/dR. The forces
and extensions are taken to be along the z axis. The curves
(f)(R) markedly change along the transition from flexible to
stiff chains and the highly non-linear force—length functions
are observed (Fig. 7). A quasi-linear region of entropy elastic-
ity is followed on curves by an upturn to higher forces. This
upturn occurs at high chain extensions in stiff chains and be-
comes very steep. In flexible chains the compression forces
(f) <0 are present only at small R. However, in stiff chains
the compressive force is predicted almost through all chain
extensions. In harmony with the shape of Helmholtz elastic
energy A(R) only one zero-force point (at finite extension) is
present on each curve {f)(R) in Fig. 7. In absence of the EV
effect an additional zero-force point would be seen at zero
extension [15]. Again, the zone of intermediate chain stiffness
is worthy of note. In less stiff chains with b below 25
(Lo/l, =4.06 for N =100), a plateau is found in wide region
of R featuring small positive mean force. Above this crossover
value of b such a plateau corresponds to small negative (com-
pressive) forces. Around the square-root of end-to-end
distance (R*)"? a force plateau changes to a force upturn.
A potentially non-monotonic shape of the force—extension
curve in the crossover region would display a van der Waals’
loop and a region of instability [17].

Force—extension curves of semiflexible chains obtained by
the AFM methods are commonly interpreted [1,2] by the WLC
model using the approximate relation [6] derived from isoten-
sional considerations

flo_ 11
kT74(1 —x)2 4+x (7)
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-0.2 1
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R

Fig. 7. The mean force (f) as a function of chain elongation R calculated for
semiflexible chains at isometric conditions for chains of N = 100 and the bend-
ing parameter b in the legend in the order of lines from left to right.
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where x = (R.)/L. and (R,) is the mean elongation along the
direction of the force. The formula accurately represents the
small and large force regimes but has a maximum error of
10% in the intermediate force regime [6]. We have computed
the force—extension profiles (R.) vs f by substituting the per-
sistence lengths calculated by Egs. (4) and (5) into the WLC
interpolation formula. The results for chain length N =100
are compared in Fig. 8 with curves (f) vs R from our isometric
simulations.

Significant differences are seen in Fig. 8 between elastic re-
sponse from simulations and from WLC interpolation formula.
First of all, the WLC profiles are shifted to lower extension in
comparison with the corresponding isometric profiles from
simulations. Then, only positive forces, all starting from ori-
gin, are present in the isotensional WLC profiles. Region of
long plateau of nearly zero forces found in simulations in
the crossover region at intermediate chain stiffness is absent
in the WLC profiles. These differences become especially
striking in stiff chains where simulations predict compressive
forces up to very high chain extensions. This assessment val-
idates the notion that the persistence lengths obtained from
fitting the experimental force—extension profiles (at a given
contour length) correspond to apparent parameters and not
to the real chain characteristics.

Several factors contribute in Fig. 8 to disparity of curves
from our discretized self-interacting WLC model and the
standard WLC model, including contour length fluctuations,
EV interactions, and boundary conditions used. Although, in
contrast to the standard WLC model, fluctuations in contour
length of simulated chains were allowed, in reality the mini-
mum changes of L. were observed in simulations. The EV
effects in simulation curves in Fig. 8 are confined only to low
extensions R/L.. Major influence on elastic functions arises
from a choice of a statistical ensemble. Because of fluctuations
in the measured lengths or forces on the single-molecule level,

0.8

o
o

<f>l,/ kT fl,/ kT
2

<
N
I

RIL;, <R>/L,

Fig. 8. Pairs of force—extension curves of semiflexible chains for chains of
N =100 and the bending parameter b given in the legend computed from sim-
ulations at isometric conditions (symbols) and from the WLC interpolation
formula (Eq. (7)) by using the extrapolated persistence lengths (/). (full
lines).

the Helmholtz and Gibbs elastic energies are not related by the
Legendre transform. The (f)(R) relations are different from
the (R.)(f) relations even in a case of the structurally simplest
polymer, polyethylene [10,19]. Only if fluctuations about the
averages are ignored the designation of averages can be aban-
doned and f and R variables can be transposed. In the limit of
infinite flexibility L./l, — o two ensembles would give the
same force—extension curves in non-interacting chains
whereas the dissimilarities would be preserved in case of
self-interacting chains.

3.4. Three-chain model of networks

The single-chain Helmbholtz elastic energy and the func-
tional dependence of the mean force (f) on R form a founda-
tion of time-honoured theories of network elasticity. Models
based on the behavior of set of “average” chains are conven-
tionally used in computations of elastic properties of polymer
networks [4,23,24,32—34]. The bending stiffness of chains in-
troduces a new microscopic parameter that has a consequence
for the traditional rubber-elasticity model of networks formed
by crosslinked flexible polymers. It is frequently assumed that
stiffening of network is ensuing primarily from longitudinal
stiffening of polymer strands themselves. A contour length
relevant in networks is the distance between network junction
points (crosslinks).

For the isometric single-chain functions presented in Figs. 6
and 7 we have employed the three-chain model of a net-
work. This approach, mostly exploited for flexible chains
[4,16,17,23,24] ought to be suitable also for not too stiff poly-
mers. The model assumes that the Helmholtz elastic energies
of chains are averaged in three orthogonal orientations. The
effective chains with the end-to-end distances R; (i = x,y,2)
parallel to the co-ordinate axes are deformed in the affine limit
at constant volume, i.e. the crosslinks move linearly with the
macroscopic dimensions of the sample L;. The respective mac-
roscopic deformations of a sample are defined as elongations
A;=LJ/L;y where subscript zero denotes the undeformed
dimensions. In the case of uniaxial elongation (4, =A and
A=A, = 2~ 2) the Helmholtz energy A, of a model network
composed of v chains per volume unit is given by the differ-
ence of the single-chain functions A(R) in the deformed and
undeformed states
Anet = VKT [A(RoA) /3 + (2/3)A(RoA,) — A(R,)] (8)
where R, = (R*)"* are the average chain dimensions of the
network chains in the undeformed state.

The Helmholtz energy of a model network A, is plotted in
Fig. 9 as a function of elongation A in wide range of chain
stiffness. The Helmholtz energy function in an ideal network
of Gaussian chains is given by the relation Ag e/
vkT = (1/2)(A*> + 22~ " — 3) which is also shown in Fig. 9. On
rising stiffness one can see a stark reduction in degree of elon-
gation A, a sharp upturn in A, and narrowing of a region
around the Helmholtz energy minimum. Interestingly, a similar
pattern in variation of A, was observed in simulations of
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Fig. 9. The Helmholtz energy of the three-chain model of networks computed
for the bending parameter b given in the legend. An analogous plot for the
ideal network is shown by the dotted line.

model networks of helical polymers as a function of tempera-
ture [34].

The differentiation of Eq. (8) with respect to elongation at
constant volume and temperature gives the nominal stress ¢ as
a function of isometric single-chain mean forces

7 = (WkTR,/3)[ f(RoA) — A7*f (RoA™1/?)] (9)

The two terms in the brackets on the right-hand-side of Eq. (9)
account for the extension and lateral compression of the sam-
ple, respectively. The stress—strain relations computed for
networks of chains of stiffness ranging from fully flexible to
rather stiff polymers display in Fig. 10 numerous features of
non-linear elasticity. Extensibility of networks is drastically
limited by increasing chain stiffness; an analogous compres-
sion effect is less pronounced in Fig. 10. The deformation of
networks of flexible chains is controlled mainly by entropy,

olvkT

Fig. 10. Stress—strain relations computed for networks of chains with the
bending parameter b given in the legend (in the order from right to left in
the upper sector). The Gaussian relation for the ideal network (dotted line)
almost coincides with line for »=0.

similarly to Gaussian networks. On the other hand, in stiffer
chains, the deformation energy is stored primarily in bending
of chain segments. Interestingly, a force plateau featured in
Fig. 7 on single-chain curves (f)(R) in the crossover region
of L¢/l, is no more discernible on stress—strain isotherms of
a model network. This hypothetical effect, supposed to occur
in networks in a region below and around A = 1, is effectively
suppressed by the lateral compression term in Eq. (9). Thus,
the low-modulus elastic response of single chains is not trans-
formed into equivalent network behavior. The plots in Fig. 10
corroborate the strain-stiffening effect generic for networks
composed of semiflexible polymers. The strain at which stiff-
ening becomes significant strongly depends on the persistence
length. It is encouraging that stress—strain relations in Fig. 10
qualitatively agree with the results of MC simulations of
a much more complex and realistic model of end-linked
networks consisting of semiflexible chains [35].

It should be mentioned, however, that the simple model
used is suitable just to networks made from not too rigid
chains, with little or no entanglements. Numerous inherent
limitations of the three-chain model preclude its applicability
to stiff networks and entangled networks. For example,
nematic mean-field type of interaction may be operative in
networks made from semirigid chains resulting in the appear-
ance of an isotropic—nematic transitions at high strains [36].
Furthermore, it is supposed that in flexible polymers the seg-
ments between crosslinks behave independently. However,
strands in semiflexible networks most likely act in series, since
segments of stiff chains remain correlated over much longer
distances that is the mesh size of a crosslinked network. Thus
the properties of such a network depend both on mesh size and
on the contour length of chains [37].

4. Conclusions

A segmental model involving self-avoiding and interacting
units, corresponding to a discretized WLC model, was em-
ployed in Monte Carlo simulations of chains of stiffness
ranging from fully flexible to relatively stiff polymers. The
persistence length and mean chain dimensions were calculated
for semiflexible polymers of intermediate lengths. Chain stift-
ness-induced modifications of the chain-end distribution func-
tions, the Helmholtz elastic energy and force—extension
curves computed in an isometric ensemble were presented.
At intermediate chain stiffness a long plateau on the force—
extension curves was observed. Qualitative differences are
found between the simulation results and the predictions of
the standard WLC model that can be ascribed to excluded-
volume effects and to an inherent dissimilarity between
isometric and isotensional boundary conditions.

Influence of bending stiffness, a new microscopic parame-
ter in traditional rubber elasticity, was explored by the three-
chain model of networks of semiflexible chains. It was found
that extensibility of networks is drastically reduced by increas-
ing chain stiffness; an analogous compression effect is less
pronounced. The stress—strain isotherms show a highly non-
linear behavior with the marked strain-stiffening effect.
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